3.661 \(\int \frac{\sqrt{\cos (c+d x)}}{\sqrt{-2+3 \cos (c+d x)}} \, dx\)

Optimal. Leaf size=75 \[ -\frac{4 \cot (c+d x) \sqrt{\sec (c+d x)-1} \sqrt{\sec (c+d x)+1} \Pi \left (\frac{1}{3};\sin ^{-1}\left (\frac{\sqrt{3 \cos (c+d x)-2}}{\sqrt{\cos (c+d x)}}\right )|\frac{1}{5}\right )}{3 \sqrt{5} d} \]

[Out]

(-4*Cot[c + d*x]*EllipticPi[1/3, ArcSin[Sqrt[-2 + 3*Cos[c + d*x]]/Sqrt[Cos[c + d*x]]], 1/5]*Sqrt[-1 + Sec[c +
d*x]]*Sqrt[1 + Sec[c + d*x]])/(3*Sqrt[5]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0590285, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.04, Rules used = {2809} \[ -\frac{4 \cot (c+d x) \sqrt{\sec (c+d x)-1} \sqrt{\sec (c+d x)+1} \Pi \left (\frac{1}{3};\sin ^{-1}\left (\frac{\sqrt{3 \cos (c+d x)-2}}{\sqrt{\cos (c+d x)}}\right )|\frac{1}{5}\right )}{3 \sqrt{5} d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]/Sqrt[-2 + 3*Cos[c + d*x]],x]

[Out]

(-4*Cot[c + d*x]*EllipticPi[1/3, ArcSin[Sqrt[-2 + 3*Cos[c + d*x]]/Sqrt[Cos[c + d*x]]], 1/5]*Sqrt[-1 + Sec[c +
d*x]]*Sqrt[1 + Sec[c + d*x]])/(3*Sqrt[5]*d)

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)}}{\sqrt{-2+3 \cos (c+d x)}} \, dx &=-\frac{4 \cot (c+d x) \Pi \left (\frac{1}{3};\sin ^{-1}\left (\frac{\sqrt{-2+3 \cos (c+d x)}}{\sqrt{\cos (c+d x)}}\right )|\frac{1}{5}\right ) \sqrt{-1+\sec (c+d x)} \sqrt{1+\sec (c+d x)}}{3 \sqrt{5} d}\\ \end{align*}

Mathematica [A]  time = 0.6622, size = 142, normalized size = 1.89 \[ -\frac{4 \cos ^2\left (\frac{1}{2} (c+d x)\right ) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{3 \cos (c+d x)-2}{\cos (c+d x)+1}} \left (F\left (\sin ^{-1}\left (\sqrt{5} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{1}{5}\right )+2 \Pi \left (-\frac{1}{5};-\sin ^{-1}\left (\sqrt{5} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{1}{5}\right )\right )}{\sqrt{5} d \sqrt{\cos (c+d x)} \sqrt{3 \cos (c+d x)-2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]/Sqrt[-2 + 3*Cos[c + d*x]],x]

[Out]

(-4*Cos[(c + d*x)/2]^2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(-2 + 3*Cos[c + d*x])/(1 + Cos[c + d*x])]*(E
llipticF[ArcSin[Sqrt[5]*Tan[(c + d*x)/2]], 1/5] + 2*EllipticPi[-1/5, -ArcSin[Sqrt[5]*Tan[(c + d*x)/2]], 1/5]))
/(Sqrt[5]*d*Sqrt[Cos[c + d*x]]*Sqrt[-2 + 3*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.428, size = 132, normalized size = 1.8 \begin{align*} -2\,{\frac{ \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{d\sqrt{-2+3\,\cos \left ( dx+c \right ) } \left ( -1+\cos \left ( dx+c \right ) \right ) \sqrt{\cos \left ( dx+c \right ) }} \left ({\it EllipticF} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }},\sqrt{5} \right ) -2\,{\it EllipticPi} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }},-1,\sqrt{5} \right ) \right ) \sqrt{{\frac{-2+3\,\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)/(-2+3*cos(d*x+c))^(1/2),x)

[Out]

-2/d*(EllipticF((-1+cos(d*x+c))/sin(d*x+c),5^(1/2))-2*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,5^(1/2)))*((-2+
3*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/(-2+3*cos(d*x+c))^(1/2)*sin(d*x+c)^2/(-1
+cos(d*x+c))/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos \left (d x + c\right )}}{\sqrt{3 \, \cos \left (d x + c\right ) - 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(-2+3*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(cos(d*x + c))/sqrt(3*cos(d*x + c) - 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{\cos \left (d x + c\right )}}{\sqrt{3 \, \cos \left (d x + c\right ) - 2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(-2+3*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(cos(d*x + c))/sqrt(3*cos(d*x + c) - 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos{\left (c + d x \right )}}}{\sqrt{3 \cos{\left (c + d x \right )} - 2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)/(-2+3*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(cos(c + d*x))/sqrt(3*cos(c + d*x) - 2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cos \left (d x + c\right )}}{\sqrt{3 \, \cos \left (d x + c\right ) - 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)/(-2+3*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(cos(d*x + c))/sqrt(3*cos(d*x + c) - 2), x)